%%ERGASTHRIO 1 %%ONOMA:GOUSIS DIMITRIOS %%AEM:900 %%TMHMA:1 %%EMAIL:digousis@inf.uth.gr %diary urername % EISAGWGH ARIQMWN STO MATLAB %Akeraioi: %5 %Dekadikoi: %-5.698742136 %ARIQMHTIKES PRAJEIS %3+4 %4-9 %3.78*2 %1/3 %6^2 %STAQERES TOU MATLAB %pi %i %STAQERES TOY SYSTHMATOS MESA APO TO MATLAB %realmin %realmax %MERIKES ENSWMATWMENES SYNARTHSEIS %sqrt(4) %exp(1) %log(ans) %sin(30) %sin(pi/6) %2*cos(0) %2*acos(0) %2*asin(0) %4*atan(1) %EMFANISH ARIQMWN STO COMMAND WINDOW %format long %pi %format short e %pi %format long e %exp(1) %format short %ANAQESH METABLHTWN %x=5.7 %y=3+4 %z = x+y %x=3 %z %OLES OI METABLHTES STO MATLAB EINAI PINAKES! %x = [1 2 2.4 3.9 5.6] % METABLHTH ORIZONTIO DIANYSMA %ORISMOS DIANYSMATOS STHLHS %c1=[2;3;9;5] %xx = [11 22 33 44]' %c2=x' %POLLAPLASIASMOS DIANYSMATOS ME ARIQMO %2*x %PROSQESH ARIQMOY SE DIANYSMA (SE KAQE STOIXEIO TOY DIANYSMATOS) %5.4 + x %PRAJEIS METAJY DIANYSMATWN %y=2*x+4 %x+y; %x-y; %x*y %x.*y %x/y %x./y %EYRESH MHKOYS DIANYSMATOS %a= length(x) %b= length(y) %ALLOI TROPOI ORISMOU DIANYSMATWN %DIANYSMA TOU OPOIOU TA STOIXEIA DIAFEROUN KATA BHMA ME SYGKEKRIMMENO %MEGE8OS %x = [2:2.5:27] %length(x) %DIANYSMA TA STOIXEIA TOU OPOIOU EINAI EPILEGMENA STOIXEIA ALLOU DIANYSMATOS %x1 = x(2:2:10) %length(x1) %x2(1) = x(3) %x2(2) = x(6) %length(x2) %ORISMOS DIANYSMATOS ME for loop %for k =1:1:a % y(k) = k*1.45; %end %MHKOS DIANYSMATOS %mhkos = norm(y,2) %GRAFIKES PARASTASEIS %therm = [60 58.4 56 55 53.1] %x = [1 3 4 4.5 6]; %b=length(therm) %plot(x,therm) %axis([1 6 50 63]) %xlabel ('mhkos ravdoy (cm) ') %ylabel ('thermokrasia (C)') %title ('thermokrasia ws pros to mhkos') %hold on %plot(x,therm, '*r') %hold off %xx=[1:0.2:6] %yy = 2.5*x+4 %hold on %plot(xx,yy, ':g') %hold off %ASKHSH 1 %Oriste ena dianysma y me 18 stoixeia, pou kaqe tou stoixeio einai iso me to %triplasio ths qeshs toy meion 9. %y = %ASKHSH 2 %Ypologiste th 2h dynamh twn stoixeiwn tou y. %d = %ASKHSH 3 %Ypologiste to eswteriko ginomeno tou dianysmatos x me ton eayto tou %eg= %ASKHSH 4 %Ypologiste thn eykleidia norma tou x xrhsimopoiwntas thn synarthsh norm. %Ti sxesh exei to nor2 me thn timh ths eg? %nor2 = %ASKHSH 5 %Kante th grafikh parastash twn zevgariwn (y(i),d(i)), i=1,2,3,.... %diary off